Vibronic Spectra from First-Principle

  22 May 2019

By Wen Xu

franck condon factor quantum mechanics computational chemistry gaussian

Vibronic spectra of molecules used to be hot research area of molecular science.

The intensity of the vibronic transition is governed by the Franck Condon principle

In this tutorial, we will use Gaussian 09 to calculate the vibronic transition intensity for a very small molecule (NH3). For larger molecules, the TD-DFT calculation of Hessian is very slow. But the user can try on their own supercomputer.

Second derivitive of the energy with respect to the molecular coordinates are very slow on my personal compute, with a Supercomputer, it will be feasible. And In Gaussian 09, the second derivative is done Numerically. There are 3N cartesian coordinates. For a centeral difference method (F’‘(x) = F(x+dx)+F(x-dx)-2F(x)/(2dx)) There are 6N calculations (plus one central coordinate x0). When the number of atoms in a molecular is getting large, it can be slow.

There are three input files for the Franck Condon Factor calculation in Gaussian

  1. The Geometry and Frequency / Normal Mode calculation of the Ground State
  2. The Geometry and Frequency / Normal Mode calculation of the Excited State (using TD-DFT or TD-HF or CIS etc)
  3. Calculation of Franck Condon Factor using results from 1 and 2.

As a result, in 1 and 2 check point file must be saved for step 3.

In the last step we will visualize the emission and absorption vibronic spetra of NH3

Ground State

Input

%NProcShared=4 
%Chk=nh3_ground.chk 
#P PW91PW91/6-311G(d,p) Opt(Z-Matrix) Freq PoP=Full 
 
 Title 
 
0 1 
N          0    0.93818       -0.02838       -0.07054 
H          0    0.62658        0.80372        0.42833 
H          0    0.62658        0.08845       -1.03367 
H          0    1.95550        0.02404       -0.09618 
 

Output

The Frequency section will look like this

 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                      1                      2                      3
                      A                      A                      A
 Frequencies --   1055.4278              1640.7715              1640.9691
 Red. masses --      1.1804                 1.0648                 1.0648
 Frc consts  --      0.7747                 1.6890                 1.6894
 IR Inten    --    149.9965                17.3644                17.3672
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   7     0.00   0.00   0.12     0.03  -0.06   0.00     0.06   0.03   0.00
     2   1     0.20   0.07  -0.53    -0.22   0.72  -0.04     0.17  -0.07  -0.26
     3   1    -0.04  -0.21  -0.53    -0.49  -0.02  -0.20    -0.56   0.21   0.16
     4   1    -0.16   0.14  -0.53     0.28   0.11   0.24    -0.43  -0.57   0.09
                      4                      5                      6
                      A                      A                      A
 Frequencies --   3384.1564              3508.9423              3509.1236
 Red. masses --      1.0269                 1.0880                 1.0880
 Frc consts  --      6.9291                 7.8929                 7.8938
 IR Inten    --      1.9437                 0.4603                 0.4606
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   7     0.00   0.00  -0.04     0.07  -0.04   0.00     0.04   0.07   0.00
     2   1     0.52   0.18   0.18    -0.50  -0.19  -0.22    -0.51  -0.15  -0.22
     3   1    -0.11  -0.54   0.18     0.06   0.19  -0.08    -0.14  -0.71   0.30
     4   1    -0.41   0.36   0.18    -0.54   0.49   0.30     0.16  -0.11  -0.08

First Excited State

Input

%NProcShared=4 
%Chk=nh3_excited.chk
#P TD(Singlets) PW91PW91/6-311G(d,p) Opt(Z-Matrix) Freq=savenormalmodes PoP=Full 
 
 Title 
 
0 1 
N          0    0.93818       -0.02838       -0.07054 
H          0    0.62658        0.80372        0.42833 
H          0    0.62658        0.08845       -1.03367 
H          0    1.95550        0.02404       -0.09618

Output

The frequency section will look like this

 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                      1                      2                      3     
                      A                      A                      A     
 Frequencies --    149.9133               957.7510               964.1658
 Red. masses --      1.2065                 1.0368                 1.0372
 Frc consts  --      0.0160                 0.5603                 0.5681
 IR Inten    --     24.7349               817.2925               804.3170
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z     
     1   7     0.00   0.00   0.12    -0.03   0.03   0.00    -0.04  -0.03   0.00  
     2   1    -0.01   0.01  -0.57     0.12   0.37  -0.01     0.69   0.18   0.00  
     3   1     0.01   0.00  -0.57    -0.30  -0.45   0.01    -0.13   0.60   0.01  
     4   1    -0.01  -0.01  -0.57     0.62  -0.41   0.00    -0.08  -0.33  -0.01 
                      4                      5                      6     
                      A                      A                      A     
 Frequencies --   2128.5194              2133.5390              2447.5687
 Red. masses --      1.1669                 1.1675                 1.0079
 Frc consts  --      3.1148                 3.1311                 3.5576
 IR Inten    --   6063.8739              6049.2871                 0.8808
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z     
     1   7     0.07   0.09   0.00     0.09  -0.07   0.00     0.00   0.00   0.00  
     2   1    -0.06  -0.43  -0.01    -0.37   0.57   0.02    -0.22   0.54   0.01  
     3   1    -0.41  -0.17  -0.01    -0.64   0.22  -0.02     0.58  -0.07   0.01  
     4   1    -0.47  -0.61   0.02    -0.20   0.17   0.00    -0.35  -0.45   0.01  

Franck-Condon Factor Calculation

Input

%NProcShared=4 
%Chk=nh3_ground.chk
#P Geom=AllCheck Freq=(ReadFC,FC,SaveNM) NoSymm

nh3_excited.chk

For Emission Spectra Calculation, just add EMI to the Freq Tuple.

Output

The start section of the result will look like this

**********************************************************************

             Generation of the Franck-Condon spectrum

 **********************************************************************


     ==================================================
               Information on the Simulation
     ==================================================

 Type of Spectroscopy: ONE-PHOTON ABSORPTION         
 Model applied to the transition: ADIABATIC HESSIAN
 Approx. of the electronic transition dipole moment: FC
 Temperature effect are not taken into account.

     ==================================================
                  Treatment of Input Data
     ==================================================
 Data for initial state taken from current calculation.
 Normal modes recovered from file.

 Data for   final state taken from checkpoint file "nh3_excited.chk"
 Normal modes recovered from file.


 Using excited electronic state number  1.

 Initial state structure is set in Eckart orientation.
 Final state structure is superposed to it.

Emission and Absorption Spectra of NH3

alt Vibronic Spectra

Since the emission intensity is too small, we multiplied it by a factor of 10. It can clearly be seen that there is a wave length shift between the emission and absorption spectra. This shift is called Stokes Shift which is due to the shift in equilibrium geometry between the ground and excited states.

comments powered by Disqus